ABSTRACT

Swarna has been used in therapeutics since ages. In Samhita when bhasmikarana was not properly explained and established they used to heat and quench in milk and used for pumsavana. After the establishment of Ayurveda Rasashastra, various and genuine methods of shodhana and Marana were explained. Swarna bhasma so prepared will be in the nano form and gives more effect disease conditions and less quantity used. Ayurveda acharyas have mentioned various methods of bhasmikarana. In the present study Nambori Phase Spot Test is used as an analytical method to standardize swarna bhasma prepared by three different methods.

Keywords: Swarna, swarna bhasma, Nambori Phase Spot Test.

INTRODUCTION: Rasashastra, the Indian Alchemy deals with standard herbo-mineral preparation which have be tested in every step for its genuinity. The main objective of these formulations or individual bhasmas is to give better health to the individual. A very popular quote from our rasa granthas states that – Loha (any dhatu- Swarnadi) when made into bhasma¹ (nano form), its potency increases and drug absorption and assimilation also gets increased². Since the samhita kaala swarna is been used in therapeutics, for example in muscular dystrophy¹, rasayana, pumsavana karma², swarna bindu prashana, etc. It is considered as best rasayana and also helpful in nullifying the spread of visha.

As it is been used in various forms and is widely used in various diseases and a large number of formulations, it is the need of the hour to check and confirm its genuinity.

Namburi phased spot test was introduced in 1970 by Dr. Namburi Hanumantha Rao for the analysis of coded Sindoora and Bhasma. The main aim behind commencing this innovative method is the identification of Bhasmas and Sinuduras by their specific names as known in Ayurveda by virtue of their quality difference and not by their chemical names alone.

This technique is based on the principles of liquid chromatography, which helps for the differential identification of each Bhasma from the other Bhasmas having same element as the main constituent.

AIM & OBJECTIVES:
1. To analyze swarna bhasma by NPST.

MATERIALS & METHOD:
Three different bhasmikarana procedures were adopted

<table>
<thead>
<tr>
<th>Sample 1:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh swarna</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Sh parada</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Sh hingula</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Sh gandhaka</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Sh manashila</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Sh navasadara</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Nimbu swarasa</td>
<td>Q.S</td>
</tr>
</tbody>
</table>
Method of preparation: *Sh swarna & Sh parada* are triturated with *nimbu swarasa* & made into an amalgam. This is washed and then other ingredients are added.

Finally it is again triturated with *nimbu swarasa* and then *laghuputa* is given. This process is repeated for 8-10 times.

Sample 2:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh swarna patra</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Sh parada</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Sh manashila</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Rasasindoora</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Swarna makshika bhasma</td>
<td>1 shana (3g)</td>
</tr>
<tr>
<td>Nimbu swarasa</td>
<td>Q.S</td>
</tr>
</tbody>
</table>

Method of preparation: *Sh swarna & Sh parada* are triturated with *nimbu swarasa* & made into an amalgam. This is washed and then *manashila, rasasindoora* and *swarna makshika bhasma* are added.

Finally it is again triturated with *nimbu swarasa* and then *laghuputa* is given. From second puta *swarana makshika bhasma* should be excluded. Total of 8-10 putas were given.

Sample 3:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh swarna patra</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Sh parada</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Sh gandhaka</td>
<td>12 karsha</td>
</tr>
<tr>
<td>Nimbu swarasa</td>
<td>Q.S</td>
</tr>
</tbody>
</table>

Method of preparation: *Sh swarna & Sh parada* are triturated with *nimbu swarasa* & made into an amalgam. This is washed and then *gandhaka* is added. Fine kajjali is prepared. Finally it is again triturated with *nimbu swarasa* and then puta is given. From second puta only *gandhaka* is added. Total of 14 putas were given. These prepared *swarna bhasma* were procured and the analysis was carried out.

NAMBURI PHASE SPOT TEST:

Procedure: Whatman paper No.1 should be impregnated with 10% potassium iodide, 10% potassium bromide, potassium ferrocynide and haridra paper separately and dried carefully on a clean glass sheet. About 0.25 gm of 3 samples of *swarna bhasma* should be taken in a test tube and aquaragia is added. The solution is allowed to settle down for 48 hours shaking vigorously at frequent intervals. A drop of this suppressant solution should be carefully put with the help of dropper on the impregnated whatman paper. As the drop comes in contact with the paper an instantaneous characteristic spot begins to develop and changes with the time. The change of colours and the pattern of the spot at 3 different phases at 3 different time intervals i.e., 0 minutes, 5 minutes 20 minutes are to be recorded.

RESULTS:

Observations were done for 4 phases-
1. 1st phase- immediately after putting of the drop
2. 2nd phase- after 5 minutes
3. 3rd phase- after 20 minutes
4. 4th phase- after 1 hour.

The following table will show the changes seen during each phase: Sample 1:

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Paper name</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Potassium bromide</td>
<td>Periphery: Orange ring circle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Centre: fading orange – yellow</td>
</tr>
</tbody>
</table>
| 2 | Potassium ferrocynide | Periphery: Dark brown circle
Centre: White ring formed in first 2 phases disappeared. centre faded |
|---|
| 3 | Potassium iodide | Periphery: dark yellow
Centre: light yellow |
| 4 | Haridra paper | Periphery: Brown ring
Centre: Faded brown |

Sample 2:

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Paper name</th>
<th>Inference</th>
</tr>
</thead>
</table>
| 1 | Potassium bromide| Periphery: Orange ring outer
Centre: Orange ring inner & few spots |
| 2 | Potassium ferrocynide | Periphery: Dark brown circle
Centre: white patches with some spots |
| 3 | Potassium iodide | Periphery: light blue uneven ring
Centre: dark blue |
| 4 | Haridra paper | Periphery: Brown ring
Centre: fading brown |

Sample 3:

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Paper name</th>
<th>Inference</th>
</tr>
</thead>
</table>
| 1 | Potassium bromide| Periphery: dark Orange ring
Centre: light orange |
| 2 | Potassium ferrocynide | Periphery: Dark brown circle
Centre: faded brown |
| 3 | Potassium iodide | Periphery & Centre: orange spot |
| 4 | Haridra paper | Periphery: dark brown
Centre: light brown |

DISCUSSION:

Swarna bhasma was prepared by following the marana procedures explained respectively. First and second sample showed bhasma siddhi lakshanas in 10putas and third sample was completed after 14th puta.

In Namburi Phased Spot test sensitivity of reactions at different time intervals is measured unlike the chromatography of chemistry.

The continual chemical reactions taking place gradually between 2 chemical substances on static media at fraction of second are easily detected by their distinct colour changes the pattern of spot which is specific to each rasa formulation, as the standard.

In the 1st and 3rd samples the spots in each paper was almost same confirming the presence of swarna but 3rd sample was more intense. 2nd sample showed blue spots showing the presence of copper and iron(swarna makshika bhasma). It can be inferred that all the three samples has the presence of swarna. As the ingredient of preparation differs, the color spots also differed. NPST is a very basic analytical procedure that can be performed in department with very less equipments but this gives a genuine information about ingredients in the formulation and bhasmas.

CONCLUSION:

From the above discussion it can be concluded that sample 1 & 3 were prepared with rasabhasma and that was confirmed with orange border and white faded ring on potassium bromide paper. In the second sample showed blue inner ring and faded outer ring depicting the presence of copper and iron (swarnamakshika bhasma) in it.

NPST is the very basic analysis for standardization which is feasible as well as can be done with basic lab equipments. So
by the results given by the test we can conclude that sample 3 contains more percentage of swarna compared to the other two. To confirm this further XRD, XRF studies can be carried out and exact percentage can be noted.

REFERENCES:
1. Vagbhata Rasa Ratna Samucchya, vol 1, commented by D.A . Kulkarni, chapter 5 verse no.39,1,21
2. Vagbhata Rasa Ratna Samucchya, vol 1, commented by D.A . Kulkarni, chapter 5, verse no. 39,1,21
4. Sharma sadanand, Rasa Tarangini, 11th edition chapter 15, verse no. 49-52
5. Sharma sadanand, Rasa Tarangini, 11th edition chapter 15, verse no. 53-58

Corresponding Author:
Dr.M.Pallavi, Asst.Professor Dept of Rasashastra and Bhaishajya Kalpana, SJGAMC,Koppal
Email: drpallavimulimani@gmail.com

Source of support: Nil
Conflict of interest: None

PHOTOS: Sample 1

![Sample 1](image1)

Sample 2

![Sample 2](image2)

Sample 3

![Sample 3](image3)