International Journal of Applied Ayurved Research ISSN: 2347-6362

A CRITICAL ANALYSIS OF MEDO DHATU: AN APPROACH TO EXPLORE THE PHYSIOLOGICAL ENTITY

1Mandal Nisith Kumar, 2Kundu Suman, 3Jana Dipanjan, 4Maity Gouranga, 5Tripathi Joydip
1Assistant Professor, Dept. Of Kriya Sharir, Raghunath Ayurved Mahavidyalaya & Hospital Contai, Purba Medinipur, West Bengal-721403
2Assistant Professor, Dept. Of Kayachikitsa
3Assistant Professor, Dept. Of Panchakarma
4Assistant Professor, Dept. Of Sarira Rachana
5Assistant Professor, Dept. Of Kaumarbhritya

ABSTRACT

Ayurveda is a well documented science on human health. All the basic segments of medical sciences including anatomy, physiology, pathology, pharmacology are well described in Ayurvedic literatures as per Ayurvedic parlance. According to Ayurveda, Dhatu are considered as one of the basic functional as well as structural component of human body. There are seven basic Dhatu present in human physiology as per Ayurvedic parlance. Medo Dhatu is a Dhatu which bear a resemblance with adipose tissue in both structural and functional aspect. This review aims at scanning of scientific articles to provide a comprehensive knowledge about the conventional entity of Medo-dhatu.

Keywords: Dhatu, Medo-dhatu, Adipose tissue

INTRODUCTION: Ayurveda is known as one of the most ancient medical literature in India as well as world. It deals both preventive and therapeutic aspect of health. The basic tributaries of medical science like anatomy, physiology, pathology, pharmacology etc are also available in Ayurvedic literatures. According to Ayurvedic compendia, physiological concept of human body are based on Dosha, Dhatu and Mala. Concept of Dhatu is a unique speculation in Ayurveda. According to Ayurvedic point of view, the Dhatu is a component of human body which is associated with structural as well as functional support to human body. Both physiologically and pathologically Dhatu bears an immense importance. An infirmity in Dhatu, makes it susceptible to vitiated Doshas which is termed as Dosa-dushyasamamurchana. Thereafter a disease is manifested. According to affected Dhatu and causative Dosha there are a number of diseases in Ayurveda. Human body are composed of seven Dhatu, which are Rasa, Rakta, Mamsa, Meda, Asthi, Majja, Sukra. Medadhatu is 4th Dhatu among all.

CRITICAL ANALYSIS OF MEDO DHATU

Acharya Madhavkar mentioned that ‘Snehatmedojanayati’ that means Medo is derived from Sneha or fatty food intake. The Medosara chiefly presents in Udara as well as in different forms in different sites such as Inside Anu-asthi (small bones) – Known as Saraktamedas
In Sthula-asthi (large bones) – Known as Majja
In Mamsa – Known as Vasa.
Medodhatu is considered as Sneha dominant Dravadhatu which is having Snigdha properties and dominance of Ambumahabhoota. Medovaha Shrotas Every dhatu have two distinct entity – Poshakadhatu – It is immobile in nature and acts as storage. Poshyadhatu – It is the mobile in nature and takes part in biochemical reactions.

In Ayurveda, Shrota is considered as a path through which the Poshyadhatu pass to and from the Poshaka Dhatu. Every
Dhatu has its own Shrota including Medo Dhatu.

Two different state of Medo-Dhatu also has been described in Ayurveda\(^\text{11}\)
- **Baddhamedha** (Stored in a particular site)
- **Abaddhamedha** (Circulating in nature)

The Medovaha-Shrotomoola refers to the organs which may be closely related to Medo Dhatu functions or which are important sites of storage related to beginning or ending of the channels of Medovaha-Shrota.

According to Brihatrayee the Medovaha Shrotamula are as following
- **Charaka–Vrikka** (Kidney) and Vapavaha (Omentum)\(^\text{12}\)
- **Shusruta–Vrikka** (Kidney) and Kati (Waist region)\(^\text{13}\)
- **Vagbhatta–Vrikka** (Kidney) and Mamsa\(^\text{14}\)

Function of Medo Dhatu

Snehana (Mobilization of lipid for physiological purpose) is the premier function of Medo Dhatu as well as others function of Medo Dhatu includes\(^\text{15,16}\)
- **Sweda** (Sweat and sebum mediated excretion via skin)
- **Dardya** (Integrity)
- **Asthipusthi** (Metabolic support to bone)

DISCUSSION

Concept of Meda Dhatu Genesis vis-a-vis Lipid Metabolism in Normal Human Subject

Concept of dhatu in Ayurveda, bear a resemblance with tissue. The English word “tissue” has been derived from the French tissue, meaning something that is woven. In conventional system, tissue is considered as a basic anatomical and physiological component of the living organism. It is defined as an aggregation of morphologically similar cells and associated intercellular matter acting together to perform specific functions in the body.

Acharya Madhavkar has mentioned that ‘Snehatmedojanayati’ that means MedoDhatu is derived from Sneha or fatty food intake.

Dietary fats are hydrolysed by the various lipolytic enzymes present in the GI tract. Triacylglycerides (TAG) molecule results in the release of 2-monoacylglycerol (2-MAG) and free fatty acids (FFAs).\(^\text{17}\) Lipolysis of phospholipids compounds produce FFAs and lysophosphatidylcholine.\(^\text{18}\) Most dietary cholesterol exists in the form of the free sterol, with only 10–15% existing as the cholesteryl ester. The latter must be hydrolyzed by cholesterol esterase to release free cholesterol for absorption.\(^\text{19}\)

In the circulation, the triglycerides carried in chylomicrons are metabolized in muscle and adipose tissue by lipoprotein lipase and free fatty acids are released, which are subsequently metabolized by muscle and adipose tissue, and chylomicron remnants are produced. Chylomicron remnants are then occupied by the liver.

In the liver VLDL are formed via endogenous lipoprotein pathway. The triglycerides carried in VLDL are metabolized in muscle and adipose tissue by lipoprotein lipase releasing free fatty acids and IDL are formed. The IDL are further metabolized to LDL, which are taken up by via the LDL receptor in numerous tissues including liver. Reverse cholesterol transport are mediated via HDL. Cholesterol and phospholipids that are effluxes from cell, are carried by HDL towards liver.\(^\text{20}\)

Storage and release of lipids are major functions of adipocytes. Hence adipose tissue is considered as lipid storage compartment.\(^\text{21}\)

Synthesis and storage of TAG in adipose tissue occur in periods of energy excess, and hydrolysis of TAG occurs in adipose
tissue to generate fatty acids for use by other organs during periods of energy deprivation.22
Hence it may be inferred that in respect to origination, the concept of Medo Dhatu correlates with the adipose tissue which is considered as the principle site of lipid storage.

Chief Sites of Medo Dhatu vis-a-vis Adiposity
According to various Ayurvedic literatures, the potential storage of Medo Dhatu includes -
- Sphik(Buttocks)
- Udaras(Abdomen)
- Vapavahana(Omentum)
- Vrikka(Kidney)
- Asthis(Bones)

Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into two types based on their metabolic activity.23
- Anabolic white adipose tissue (WAT)
- Catabolic brown adipose tissue, (BAT)

BAT is be biologically active in neonates and young children to maintain normal body temperature generating heat. BAT regressed with aging by transforming into white adipose tissue WAT.24

Fat distribution in adult human body, two distinct types of white adipose tissue are found
- Subcutaneous areas (SCAT)
- Visceral adipose tissue (VAT)

VAT is present mainly in the mesentery and omentum and drains directly through the portal circulation to the liver. VAT adipocytes are more metabolically active, more sensitive to lipolysis and contains a larger number of inflammatory and immune cells.25

Adipose tissue distribution around the kidney have two distinct location
- Perirenal fat – An accumulation of adipose tissue between renal capsule and renal fascia
- Pararenal fat - Adipose tissue superficial to renal fascia

Brown adipose tissue developmentally found in interscapular and perirenal regions.26
Bone marrow adipose (BMAT) tissue develops postnatally and accounts for 50–70% of bone marrow volume in healthy adult humans. BMAT development is a normal physiological process. BMAT further accumulates with aging and in diverse clinical conditions.27

All the chief sites of Medo Dhatu as mentioned in Ayurvedic compendia, are found to be linked with adiposity.

Function of Medo Dhatu in Conventional Parlance
Sweda(Sweat and sebum mediated excretion via skin): The skin also acts as an excretory organ. Water-soluble exogenous and endogenous toxic/bioactive substances, such as metals, drugs, cytokines, and steroids can be eliminated in the sweat.

Sebum secretion pathway plays an important role in lipid and cholesterol homeostasis. An enhanced sebum secretion results in elimination of excessive circulating lipids and fat-soluble substances from circulation. The major component of human sebum is triglycerides and fatty acids (57%). Hence an increased circulating lipid leads to enhanced production of sebum.28

Dardya(Integrity)
A phospholipid bilayer with associated proteins that surrounds the cell is termed as plasma membrane. Plasma membrane are consist of phospholipid bilayer and membrane proteins. Lipids are the fundamental structural elements of membranes and proteins are responsible for carrying out specific membrane functions.29 Lipids function as essential structural components of cell membranes and maintain cellular integrity. So the Dardya function of Medo Dhatu, may corresponds to function of plasma membrane lipid.

Asthipusthi (Metabolic support to bone)
It has been recently suggested that BMAT directly regulates bone metabolism. In the last decade, bone has emerged as a highly metabolic organ that contributes to the regulation of whole-body metabolism. BMAT also has been shown to be responsive to parathyroid hormone and to secrete receptor activator of nuclear factor kappa-B ligand (RANKL), a key regulator of osteoclast differentiation and activation. This suggests that BMAT exhibits unique osteo-resorptive characteristics. Adipose tissue acts as a lipid storage compartment in human body. Two primary metabolic activities of white adipose tissue includes lipogenesis and lipolysis. In response to changes in nutritional state, lipolysis rates are precisely regulated through hormonal and biochemical signals.

Adipose tissue liberates glycerol and nonesterified fatty acids into systemic circulation via lipolytic pathway from triacylglycerol stores inside adipocytes. Net cholesterol mobilization from adipose tissue also occurred after acute starvation. Adipose tissue plays the central role in regulation of lipid mobilization and metabolism.

CONCLUSION

Both anatomical as well as physiological aspect of Medo Dhatu conventionally correlates with adipose tissue. Role of adipose tissue in human physiology are recently in the prime area of interest. Adipose tissue plays an important role in various metabolic disorder like metabolic syndrome, diabetes mellitus etc. Ancient classical texts of Ayurveda also described various metabolic disorders such as Atisthoulya, Madhumeha etc associated with altered physiology of Medo-Dhatu.

REFERENCES

and Dridhabala with Ayurveda-Dipika Commentary by Chakrapanidatta. 1st ed. Varanasi: Chaukhamba Prakashan; Reprinted 2013. p 514
25. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and

Corresponding Author: Dr. Nisith Kumar Mandal, Assistant Professor, Dept. Of Kriya Sharir, Raghunath Ayurved Mahavidyalaya & Hospital Contai, Purba Medinipur, West Bengal-721403
Email: mandalnisith09@gmail.com.

Source of support: Nil
Conflict of interest: None
Declared